Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Cell Biol ; 25(4): 528-539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024683

RESUMO

Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Animais , Humanos , Camundongos , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo
2.
Dis Model Mech ; 16(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36826849

RESUMO

Hematopoiesis is a continuous process of blood and immune cell production. It is orchestrated by thousands of gene products that respond to extracellular signals by guiding cell fate decisions to meet the needs of the organism. Although much of our knowledge of this process comes from work in model systems, we have learned a great deal from studies on human genetic variation. Considerable insight has emerged from studies on presumed monogenic blood disorders, which continue to provide key insights into the mechanisms critical for hematopoiesis. Furthermore, the emergence of large-scale biobanks and cohorts has uncovered thousands of genomic loci associated with blood cell traits and diseases. Some of these blood cell trait-associated loci act as modifiers of what were once thought to be monogenic blood diseases. However, most of these loci await functional validation. Here, we discuss the validation bottleneck and emerging methods to more effectively connect variant to function. In particular, we highlight recent innovations in genome editing, which have paved the path forward for high-throughput functional assessment of loci. Finally, we discuss existing barriers to progress, including challenges in manipulating the genomes of primary hematopoietic cells.


Assuntos
Edição de Genes , Hematopoese , Humanos , Diferenciação Celular/genética , Genômica
3.
J Mech Behav Biomed Mater ; 131: 105233, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504197

RESUMO

The demand for revision knee replacement (RKR) has increased dramatically with rising patient life expectancy and younger recipients for primary TKR. However, significant challenges to RKR arise from osseous defects, reduced bone quality, potential bone volume loss from implant removal and the need to achieve implant stability. This study utilizes the outcomes of an ongoing RKR clinical trial using porous metaphyseal cones 3D-printed of titanium, to investigate 1) bone mineral density (BMD) changes in three fixation zones (epiphysis, metaphysis, and diaphysis) over a year and 2) the biomechanical effects of the cones at 6 months post-surgery. It combines dual-energy x-ray absorptiometry (DXA), computed tomography (CT) with patient-specific based finite element (FE) modelling. Bone loss (-0.086 ± 0.05 g/cm2) was found in most patients over the first year. The biomechanical assessment considered four different loading scenarios from standing, walking on a flat surface, and walking downstairs, to a simulated impact of the knee. The patient-specific FE models showed that the cones marginally improved the strain distribution in the bone and shared the induced load but played a limited role in reducing the risks of bone fracture or cement debonding. This technique of obtaining real live data from a randomized clinical trial and inserting it into an in-silico FE model is unique and innovative in RKR research. The tibia RKR biomechanics examined open up further possibilities, allowing the in-silico testing of prototypes and implant combinations without putting patients at risk as per the recommended IDEAL framework standards. This process with further improvements could allow rapid innovation, optimization of implant design, and improve surgical planning.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Artroplastia do Joelho/efeitos adversos , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Desenho de Prótese , Reoperação/métodos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
4.
Blood Adv ; 5(19): 3876-3890, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34492683

RESUMO

IKAROS family zinc finger 1 (IKZF1) alterations represent a diverse group of genetic lesions that are associated with an increased risk of relapse in B-cell acute lymphoblastic leukemia. Due to the heterogeneity of concomitant lesions, it remains unclear how IKZF1 abnormalities directly affect cell function and therapy resistance, and whether their consideration as a prognostic indicator is valuable in improving outcome. CRISPR/Cas9 strategies were used to engineer multiple panels of isogeneic lymphoid leukemia cell lines with a spectrum of IKZF1 lesions to measure changes in chemosensitivity, gene expression, cell cycle, and in vivo engraftment that can be linked to loss of IKAROS protein. IKZF1 knockout and heterozygous null cells displayed relative resistance to a number of common therapies for B-cell acute lymphoblastic leukemia, including dexamethasone, asparaginase, and daunorubicin. Transcription profiling revealed a stem/myeloid cell-like phenotype and JAK/STAT upregulation after IKAROS loss. A CRISPR homology-directed repair strategy was also used to knock-in the dominant-negative IK6 isoform into the endogenous locus, and a similar drug resistance profile, with the exception of retained dexamethasone sensitivity, was observed. Interestingly, IKZF1 knockout and IK6 knock-in cells both have significantly increased sensitivity to cytarabine, likely owing to marked downregulation of SAMHD1 after IKZF1 knockout. Both types of IKZF1 lesions decreased the survival time of xenograft mice, with higher numbers of circulating blasts and increased organ infiltration. Given these findings, exact specification of IKZF1 status in patients may be a beneficial addition to risk stratification and could inform therapy.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Humanos , Fator de Transcrição Ikaros/genética , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Recidiva
5.
Sci Adv ; 7(27)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34215579

RESUMO

We report a novel single-cell whole-genome amplification method (LCS-WGA) that can efficiently capture spontaneous DNA damage existing in single cells. We refer to these damage-associated single-nucleotide variants as "damSNVs," and the whole-genome distribution of damSNVs as the damagenome. We observed that in single human neurons, the damagenome distribution was significantly correlated with three-dimensional genome structures. This nonuniform distribution indicates different degrees of DNA damage effects on different genes. Next, we identified the functionals that were significantly enriched in the high-damage genes. Similar functionals were also enriched in the differentially expressed genes (DEGs) detected by single-cell transcriptome of both Alzheimer's disease (AD) and autism spectrum disorder (ASD). This result can be explained by the significant enrichment of high-damage genes in the DEGs of neurons for both AD and ASD. The discovery of high-damage genes sheds new lights on the important roles of DNA damage in human diseases and disorders.


Assuntos
Doença de Alzheimer , Transtorno do Espectro Autista , Doença de Alzheimer/genética , Transtorno do Espectro Autista/genética , Dano ao DNA , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Transcriptoma
6.
Cell Stem Cell ; 27(2): 326-335.e4, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32673568

RESUMO

DNA methyltransferase 3A (DNMT3A) is the most commonly mutated gene in clonal hematopoiesis (CH). Somatic DNMT3A mutations arise in hematopoietic stem cells (HSCs) many years before malignancies develop, but difficulties in comparing their impact before malignancy with wild-type cells have limited the understanding of their contributions to transformation. To circumvent this limitation, we derived normal and DNMT3A mutant lymphoblastoid cell lines from a germline mosaic individual in whom these cells co-existed for nearly 6 decades. Mutant cells dominated the blood system, but not other tissues. Deep sequencing revealed similar mutational burdens and signatures in normal and mutant clones, while epigenetic profiling uncovered the focal erosion of DNA methylation at oncogenic regulatory regions in mutant clones. These regions overlapped with those sensitive to DNMT3A loss after DNMT3A ablation in HSCs and in leukemia samples. These results suggest that DNMT3A maintains a conserved DNA methylation pattern, the erosion of which provides a distinct competitive advantage to hematopoietic cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Hematopoese , Células Clonais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Epigênese Genética , Hematopoese/genética , Mutação/genética
7.
Blood Adv ; 4(14): 3357-3367, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32717029

RESUMO

Virus-specific T cells have proven highly effective for the treatment of severe and drug-refractory infections after hematopoietic stem cell transplant (HSCT). However, the efficacy of these cells is hindered by the use of glucocorticoids, often given to patients for the management of complications such as graft-versus-host disease. To address this limitation, we have developed a novel strategy for the rapid generation of good manufacturing practice (GMP)-grade glucocorticoid-resistant multivirus-specific T cells (VSTs) using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology. We have shown that deleting the nuclear receptor subfamily 3 group C member 1 (NR3C1; the gene encoding for the glucocorticoid receptor) renders VSTs resistant to the lymphocytotoxic effect of glucocorticoids. NR3C1-knockout (KO) VSTs kill their targets and proliferate successfully in the presence of high doses of dexamethasone both in vitro and in vivo. Moreover, we developed a protocol for the rapid generation of GMP-grade NR3C1 KO VSTs with high on-target activity and minimal off-target editing. These genetically engineered VSTs promise to be a novel approach for the treatment of patients with life-threatening viral infections post-HSCT on glucocorticoid therapy.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Humanos , Receptores de Glucocorticoides/genética , Linfócitos T
8.
Cancer Cell ; 37(3): 267-269, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32183947

RESUMO

Several acute myeloid leukemia genetic sub-types converge on high expression of HOX genes, critical for their self-renewal. A new orally bioavailable Menin-MLL inhibitor (VTP-50469) appears to promote their differentiation through direct effects on the HOX cofactor MEIS1, paving the way for clinical trials.


Assuntos
Proteínas de Homeodomínio/genética , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Cromatina , Histona-Lisina N-Metiltransferase/genética , Camundongos , Proteínas Nucleares , Nucleofosmina
9.
PLoS One ; 14(10): e0222523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600225

RESUMO

The development of automatic methods for segmenting anatomy from medical images is an important goal for many medical and healthcare research areas. Datasets that can be used to train and test computer algorithms, however, are often small due to the difficulties in obtaining experts to segment enough examples. Citizen science provides a potential solution to this problem but the feasibility of using the public to identify and segment anatomy in a medical image has not been investigated. Our study therefore aimed to explore the feasibility, in terms of performance and motivation, of using citizens for such purposes. Public involvement was woven into the study design and evaluation. Twenty-nine citizens were recruited and, after brief training, asked to segment the spine from a dataset of 150 magnetic resonance images. Participants segmented as many images as they could within three one-hour sessions. Their accuracy was evaluated by comparing them, as individuals and as a combined consensus, to the segmentations of three experts. Questionnaires and a focus group were used to determine the citizens' motivation for taking part and their experience of the study. Citizen segmentation accuracy, in terms of agreement with the expert consensus segmentation, varied considerably between individual citizens. The citizen consensus, however, was close to the expert consensus, indicating that when pooled, citizens may be able to replace or supplement experts for generating large image datasets. Personal interest and a desire to help were the two most common reasons for taking part in the study.


Assuntos
Ciência do Cidadão/métodos , Pesquisa sobre Serviços de Saúde/métodos , Motivação , Coluna Vertebral/diagnóstico por imagem , Adolescente , Adulto , Idoso , Algoritmos , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Software , Adulto Jovem
10.
Int J Hematol ; 110(2): 150-160, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30632059

RESUMO

Acute myeloid leukemia (AML), the most common acute leukemia in adults, increases exponentially with age. While a number of recent advances have improved treatment, high cure rates have not yet been achieved. Nucleophosmin (NPM1) is found mutated in nearly one-third of newly diagnosed cases and leads to NPM1 protein that is mislocalized to the cytoplasm instead of the nucleolus. If the mechanistic basis through which this mislocalization leads to malignancy could be revealed, this AML subtype may be targetable with new drugs. Here, we review the structure and functions of the normal and mutant forms of nucleophosmin. We discuss several recent studies that have shed light on the pathophysiology of NPM1 mutations. We discuss the importance of HOX gene misregulation in NPM1-mutated leukemias, as well as evidence for the reliance of mutated NPM1 on its continued nuclear export. Together, these aspects, as well as new tools to manipulate and study NPM1, open the door to new therapeutic strategies that may ultimately improve treatment of this common subtype of AML.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Animais , Nucléolo Celular/metabolismo , Transformação Celular Neoplásica/genética , Citoplasma/metabolismo , Mutação da Fase de Leitura , Regulação Leucêmica da Expressão Gênica , Genes Homeobox , Instabilidade Genômica , Humanos , Leucemia Experimental/genética , Leucemia Mieloide Aguda/fisiopatologia , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Mutação de Sentido Incorreto , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Nucleofosmina , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Transporte Proteico , Relação Estrutura-Atividade
11.
Cancer Cell ; 34(3): 499-512.e9, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205049

RESUMO

NPM1 is the most frequently mutated gene in cytogenetically normal acute myeloid leukemia (AML). In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c); however, it is unknown whether NPM1c is required to maintain the leukemic state. Here, we show that loss of NPM1c from the cytoplasm, either through nuclear relocalization or targeted degradation, results in immediate downregulation of homeobox (HOX) genes followed by differentiation. Finally, we show that XPO1 inhibition relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of Npm1-mutated leukemic mice. We describe an exquisite dependency of NPM1-mutant AML cells on NPM1c, providing the rationale for the use of nuclear export inhibitors in AML with mutated NPM1.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Idoso , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação para Baixo , Feminino , Humanos , Hidrazinas/farmacologia , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteólise , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
12.
J Vis Exp ; (134)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29708546

RESUMO

Advances in the hematopoietic stem cell (HSCs) field have been aided by methods to genetically engineer primary progenitor cells as well as animal models. Complete gene ablation in HSCs required the generation of knockout mice from which HSCs could be isolated, and gene ablation in primary human HSCs was not possible. Viral transduction could be used for knock-down approaches, but these suffered from variable efficacy. In general, genetic manipulation of human and mouse hematopoietic cells was hampered by low efficiencies and extensive time and cost commitments. Recently, CRISPR/Cas9 has dramatically expanded the ability to engineer the DNA of mammalian cells. However, the application of CRISPR/Cas9 to hematopoietic cells has been challenging, mainly due to their low transfection efficiencies, the toxicity of plasmid-based approaches and the slow turnaround time of virus-based protocols. A rapid method to perform CRISPR/Cas9-mediated gene editing in murine and human hematopoietic stem and progenitor cells with knockout efficiencies of up to 90% is provided in this article. This approach utilizes a ribonucleoprotein (RNP) delivery strategy with a streamlined three-day workflow. The use of Cas9-sgRNA RNP allows for a hit-and-run approach, introducing no exogenous DNA sequences in the genome of edited cells and reducing off-target effects. The RNP-based method is fast and straightforward: it does not require cloning of sgRNAs, virus preparation or specific sgRNA chemical modification. With this protocol, scientists should be able to successfully generate knockouts of a gene of interest in primary hematopoietic cells within a week, including downtimes for oligonucleotide synthesis. This approach will allow a much broader group of users to adapt this protocol for their needs.


Assuntos
Sistemas CRISPR-Cas/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco/metabolismo , Animais , Edição de Genes , Humanos , Camundongos
13.
Elife ; 72018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570050

RESUMO

Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer's patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17-24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders.


Assuntos
Estimulação Encefálica Profunda/métodos , Perfilação da Expressão Gênica , Neurogênese/genética , Plasticidade Neuronal/genética , Splicing de RNA/genética , Animais , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/terapia , Feminino , Fórnice/metabolismo , Fórnice/fisiologia , Redes Reguladoras de Genes , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Síndrome de Rett/genética , Síndrome de Rett/terapia
14.
Genome Biol ; 18(1): 176, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923089

RESUMO

BACKGROUND: DNA methylation has widespread effects on gene expression during development. However, our ability to assign specific function to regions of DNA methylation is limited by the poor correlation between global patterns of DNA methylation and gene expression. RESULTS: Here, we utilize nuclease-deactivated Cas9 protein fused to repetitive peptide epitopes (SunTag) recruiting multiple copies of antibody-fused de novo DNA methyltransferase 3A (DNMT3A) (dCas9-SunTag-DNMT3A) to amplify the local DNMT3A concentration to methylate genomic sites of interest. We demonstrate that dCas9-SunTag-DNMT3A dramatically increases CpG methylation at the HOXA5 locus in human embryonic kidney (HEK293T) cells. Furthermore, using a single guide RNA, dCas9-SunTag-DNMT3A is able to methylate a 4.5-kb genomic region and repress HOXA5 gene expression. Reduced representation bisulfite sequencing and RNA-seq show that dCas9-SunTag-DNMT3A methylates regions of interest with minimal impact on the global DNA methylome and transcriptome. CONCLUSIONS: This effective and precise tool enables site-specific manipulation of DNA methylation and may be used to address the relationship between DNA methylation and gene expression.


Assuntos
Sistemas CRISPR-Cas , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Epigênese Genética , Edição de Genes/métodos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos
15.
Exp Hematol ; 54: 4-11, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757433

RESUMO

The hematopoietic system is responsible for transporting oxygen and nutrients, fighting infections, and repairing tissue damage. Hematopoietic system dysfunction therefore causes a range of serious health consequences. Lifelong hematopoiesis is maintained by repopulating multipotent hematopoietic stem cells (HSCs) that replenish shorter-lived, mature blood cell types. A prokaryotic mechanism of immunity, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system, has been recently "repurposed" to mutate mammalian genomes efficiently and in a sequence-specific manner. The application of this genome-editing technology to hematology has afforded new approaches for functional genomics and even the prospect of "correcting" dysfunctional HSCs in the treatment of serious genetic hematological diseases. In this Perspective, we provide an overview of three recent CRISPR/Cas9 methods in hematology: gene disruption, gene targeting, and saturating mutagenesis. We also summarize the technical considerations and advice provided during the May 2017 International Society of Experimental Hematology New Investigator Committee webinar on the same topic.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcação de Genes/métodos , Genoma , Hematologia/métodos , Mutagênese , Animais , Biologia Computacional , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
16.
Nat Commun ; 8: 16026, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28695892

RESUMO

Comprehensive studies have shown that DNA methylation plays vital roles in both loss of pluripotency and governance of the transcriptome during embryogenesis and subsequent developmental processes. Aberrant DNA methylation patterns have been widely observed in tumorigenesis, ageing and neurodegenerative diseases, highlighting the importance of a systematic understanding of DNA methylation and the dynamic changes of methylomes during disease onset and progression. Here we describe a facile and convenient approach for efficient targeted DNA methylation by fusing inactive Cas9 (dCas9) with an engineered prokaryotic DNA methyltransferase MQ1. Our study presents a rapid and efficient strategy to achieve locus-specific cytosine modifications in the genome without obvious impact on global methylation in 24 h. Finally, we demonstrate our tool can induce targeted CpG methylation in mice by zygote microinjection, thereby demonstrating its potential utility in early development.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Edição de Genes/métodos , Proteínas Recombinantes de Fusão/metabolismo , Animais , Fator de Ligação a CCCTC/metabolismo , Ilhas de CpG , Células HEK293 , Humanos , Células K562 , Camundongos , Microinjeções , Tenericutes/enzimologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-28003281

RESUMO

DNA methylation is an epigenetic process involved in development, aging, and cancer. Although the advent of new molecular techniques has enhanced our knowledge of how DNA methylation alters chromatin and subsequently affects gene expression, a direct link between epigenetic marks and tumorigenesis has not been established. DNMT3A is a de novo DNA methyltransferase that has recently gained relevance because of its frequent mutation in a large variety of immature and mature hematologic neoplasms. DNMT3A mutations are early events during cancer development and seem to confer poor prognosis to acute myeloid leukemia (AML) patients making this gene an attractive target for new therapies. Here, we discuss the biology of DNMT3A and its role in controlling hematopoietic stem cell fate decisions. In addition, we review how mutant DNMT3A may contribute to leukemogenesis and the clinical relevance of DNMT3A mutations in hematologic cancers.


Assuntos
Biomarcadores Tumorais/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Mutação , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/terapia
18.
Cell Rep ; 17(5): 1453-1461, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783956

RESUMO

Our understanding of the mechanisms that regulate hematopoietic stem/progenitor cells (HSPCs) has been advanced by the ability to genetically manipulate mice; however, germline modification is time consuming and expensive. Here, we describe fast, efficient, and cost-effective methods to directly modify the genomes of mouse and human HSPCs using the CRISPR/Cas9 system. Using plasmid and virus-free delivery of guide RNAs alone into Cas9-expressing HSPCs or Cas9-guide RNA ribonucleoprotein (RNP) complexes into wild-type cells, we have achieved extremely efficient gene disruption in primary HSPCs from mouse (>60%) and human (∼75%). These techniques enabled rapid evaluation of the functional effects of gene loss of Eed, Suz12, and DNMT3A. We also achieved homology-directed repair in primary human HSPCs (>20%). These methods will significantly expand applications for CRISPR/Cas9 technologies for studying normal and malignant hematopoiesis.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Animais , Reparo do DNA , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos
19.
Mutat Res ; 729(1-2): 1-15, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22016070

RESUMO

DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a brief overview of new sequencing platforms that are currently waiting in the wings to advance this exploding field even further.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Variação Genética , Genoma Humano , Mutação em Linhagem Germinativa , Humanos , Taxa de Mutação , Neoplasias/genética , Alinhamento de Sequência
20.
Nucleic Acids Res ; 40(5): 2032-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22086961

RESUMO

DNA mutations are the inevitable consequences of errors that arise during replication and repair of DNA damage. Because of their random and infrequent occurrence, quantification and characterization of DNA mutations in the genome of somatic cells has been difficult. Random, low-abundance mutations are currently inaccessible by standard high-throughput sequencing approaches because they cannot be distinguished from sequencing errors. One way to circumvent this problem and simultaneously account for the mutational heterogeneity within tissues is whole genome sequencing of a representative number of single cells. Here, we show elevated mutation levels in single cells from Drosophila melanogaster S2 and mouse embryonic fibroblast populations after treatment with the powerful mutagen N-ethyl-N-nitrosourea. This method can be applied as a direct measure of exposure to mutagenic agents and for assessing genotypic heterogeneity within tissues or cell populations.


Assuntos
Análise Mutacional de DNA/métodos , Análise de Célula Única , Animais , Linhagem Celular , Células Cultivadas , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Etilnitrosoureia/toxicidade , Genoma , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...